Tuesday, December 14, 2010

The Binomial Theorem

Today we learned about the binomial theorem. This theorem allows you to expand x+y into a sum using this formula.


picture from wikipedia



REMEMBER! A binomial expansion where the exponent is n will have a n + 1 terms when expanded.

Example:

(x2 + 3)6 = 6C0 (x2)6(3)0 + 6C1 (x2)5(3)1 + 6C2 (x2)4(3)2 + 6C3 (x2)3(3)3

      + 6C4 (x2)2(3)4 + 6C5 (x2)1(3)5 + 6C6 (x2)0(3)6

    Then simplifying gives me

      (1)(x12)(1) + (6)(x10)(3) + (15)(x8)(9) + (20)(x6)(27)

        + (15)(x4)(81) + (6)(x2)(243) + (1)(1)(729)

        = x12 + 18x10 + 135x8 + 540x6 + 1215x4 + 1458x2 + 729

When looking for a specific term within a binomial expansion we use this formula:


Example: Find the 14th term of (x+y)^16

a = x, b = y, n = 16, k = 14-1 = 13

t 13 + 1 = 16C13 x^(16-13) y^13

= 560 x^3 y^13

No comments:

Post a Comment