picture from wikipedia
REMEMBER! A binomial expansion where the exponent is n will have a n + 1 terms when expanded.
Example:
(x2 + 3)6 = 6C0 (x2)6(3)0 + 6C1 (x2)5(3)1 + 6C2 (x2)4(3)2 + 6C3 (x2)3(3)3
+ 6C4 (x2)2(3)4 + 6C5 (x2)1(3)5 + 6C6 (x2)0(3)6
Then simplifying gives me
(1)(x12)(1) + (6)(x10)(3) + (15)(x8)(9) + (20)(x6)(27)
+ (15)(x4)(81) + (6)(x2)(243) + (1)(1)(729)
= x12 + 18x10 + 135x8 + 540x6 + 1215x4 + 1458x2 + 729
Example: Find the 14th term of (x+y)^16
a = x, b = y, n = 16, k = 14-1 = 13
t 13 + 1 = 16C13 x^(16-13) y^13
= 560 x^3 y^13
No comments:
Post a Comment